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ABSTRACT 

An analysis of the time-varying calorimetric systems used in the study of molecular 
mixtures obtained by continuous injection is presented from the point of view of signal 
processing. A complete recipe to perform the identification and deconvolution of the thermal 
output is given, which enables rather complex systems to be dealt with, i.e. calorimeters 
whose time-invariant transfer function presents not only real poles but non-negligible zeros as 
well. The recipe has been deduced following a theoretical study of a model which represents 
rather accurately the actual behaviour of a heat-conduction calorimeter used in the study of 
continuous liquid mixtures. 

INTRODUCTION 

Coupling a mechanism for continuous injection of liquids to a highly 
sensitive heat-conduction calorimeter has opened the possibility of studying 
thermal properties of solutions at very low concentrations (x < 0.001). New 
and sometimes unexpected results have been found in certain molecular 
mixtures [l], in the study of micellar solutions and in the investigation of 
miscibility regions in systems exhibiting separation of phases. 

Accurate experimental tests have shown, in turn, that the coupling of the 
continuous injection device to the calorimeter results in a slightly time-vary- 
ing calorimetric system [2]. As a consequence, one is faced with the problem 
of developing new signal-processing algorithms which take into account 
explicitly the breakdown of the time-invariancy and enable the actual 
thermal power released inside the calorimeter to be recovered from the 
thermal output signal. Much effort has been directed towards generalizing 
classical inverse filtering to the new situation, simulated by very simple 
models. Up to now the generalization has been carried out only for models 
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which, in the time-invariant state, only exhibit poles in their transfer 
function [3,4]. 

As a step forward, the objective of the present paper is to extend the 
generalization of inverse filtering to a situation in which the time-invariant 
transfer function of the device does present non-negligible zeros. This is the 
case, for example, when dissipation takes place near the detection system [5]. 

The plan of the paper is as follows: in part 1 the theoretical framework of 
the problem is presented; thus, in section 1.1 an elaborate time-varying 
calorimetric model is developed which, with high generality, resembles the 
actual behaviour of calorimeters with continuous injection systems. In 
section 1.2 we discuss the kind of information that is actually available from 
calorimetric experiments, relating it to the equations of the model. In section 
1.3, finally, we establish the correspondence between the experimental 
information and the solutions to the signal-processing problem suggested by 
the equations of the model. This is done after a formal rearrangement of the 
transport equations, resulting in what we have called “fictitious equations”. 
An example for a very simple model is explained in full detail. In part 2 a 
rather complete ensemble of numerical calculations and results is presented: 
section 2.1 describes different particularities of the general model to the 
different possible experimental situations. In section 2.2 the corresponding 
numerical results obtained by means of the “fictitious equations” are given; 
from the pattern of behaviour which results, a detailed rule of experimental 
and numerical procedure is designed, which is believed to be of general 
applicability for heat conduction calorimeters with continuous injection 
devices. 

1. THEORETICAL FRAMEWORK 

In a previous work [3] we have shown that the continuous injection of a 
liquid inside the laboratory cell of a heat-conduction calorimeter results in a 
double effect: on one side the thermal and geometrical properties of the 
calorimeter change with time and therefore the calorimeter, considered as an 
input-output system, ceases to be time-invariant. Or, in other words, the 
deformation produced on the thermal power signal released in it is continu- 
ously changing throughout the experiment. On the other side, there is a 
modification in the energy balance inside the calorimeter because part of the 
heat released (or absorbed) in the process under study has to be devoted to 
raise (or lower) the temperature of the liquid which is being injected. 

In order to recover the thermogenesis, i.e. the input signal representing 
the evolution of the thermal power with time, in these situations, a new 
algorithm has been proposed. It essentially consists of a typical inverse 
filtering using parameters which vary with time to account for the first of the 
above-mentioned effects, followed by an extra-correction proportional to the 
rate of injection of liquid to account for the second effect [3]. 
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The algorithm is also of application when there is an appreciable variation 
of the thermal couplings with time, which results in a dependence of the 
calorimetric sensitivity on the level of liquid contents in the cell [4]. 

1. I. Model of the time-varying calorimeter 

All the analyses leading to such conclusions were performed on heat-con- 
duction models which represent a calorimeter by means of an electrical 
analogy to an RC circuit, and which are called “localized constants models”. 
The study was restricted to the situation in which the invariant system 
obtained from the model by neglecting the temporal dependence of the 
parameters had only poles in its transfer function. Consequently, the linear 
differenti~ equation relating the thermogenesis to the thermogram did not 
contain any derivative of the thermal power. The models resembled the 
thermal behaviour of an actual system (Arion-Electronique calorimeter of 
the BCP type) and presented only three thermal capacities. Therefore the 
thermogram was identified with the temperature of the third element. 

A more realistic approach, however, should consider that the detection 
system in a heat conduction calorimeter is usually a battery of thermocou- 
ples, and consequently the resulting signal or thermogram is related to a 
difference of temperatures between their ends. And also that there is a 
stirring device inside the fluid which has to be simulated by inert elements of 
the model. This will produce zeros in the transfer function of the time-in- 
variant version of the model. The presence of intense stirring enables the 
hypothesis to be made that the power dissipation takes place in the bulk of 
the liquid in the calorimetric vessel. But, as the liquid injected enters the 
vessel at the temperature of the thermostat, an extra contribution has still to 
be added in the heat balance equations of the vessel. 

Taking all these elements into account, and assuming that the dissipation 
takes place in the L-th element, which will therefore represent the vessel, the 
heat-balance equations for a general model consisting of N elements read: 

O=C,s+ z P,,(T,-T,)+P,T, 
k#l 

IV= L$!$ + x P&T,- T,) + PLTL+ TLz 
k#L 

d TN 
0 = Gq- + 23 Cv& - Tk) + f’ivTiv 

k#N 

0) 

where C, represents the heat capacity of the i-th element, Pi the inverse of 
the thermal resistance between the i-th element and the thermostat and Pik 
the inverse of the thermal resistance between the i-th and the k-th elements. 
Generally speaking, due to the variation of volume of liquid inside the 
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Fig. 1. Diagram of the calorimetric model used in the numerical simulations. 

laboratory cell, any of these parameters can be a function of the level of cell 
contents x(t), and hence a function of time. The term cLTL represents the 
power absorbed to change the temperature of the liquid which is being 
injected, from the temperature of the thermostat (To = 0) to the temperature 
of the mixture ( TL). 

The equations of the general model will be reduced to account for the 
particular conditions of each model. For example, as in the vicinity of the 
laboratory cell every element almost surrounds the one before, only cou- 
plings to the immediate neighbours have to be considered in this part. 
Moreover, when the level of liquid in the cell influences the thermal 
couplings, only the couplings connected to the element of variable capacity 
will have to be considered as variable. The rest of the device will not change 
with time. Finally, as the thermocouples measure temperature differences, 
the thermogram of the model will be obtained as the difference between the 
temperatures q and q. 

As it will be detailed in section 2.1, we have restricted our numerical 
applications and results to a specific model with only six thermal capacities, 
which is presented in Fig. 1. On the one side, the model exceedingly covers 
the experimental possibilities: in an actual calorimeter with injection the 
signal-to-noise ratio on the thermogram is rarely greater than 60 dB and 
therefore the possibilities of identifying six time constants, corresponding to 
the six poles of the model in the time-inva~ant situation, and one or more 
zeros, are practically null. On the other side, the simplified model of Fig. 1 
still represents the main features we demanded of the general model to 
perform a very general study, namely: 

(4 
(b) 

(4 

a detection based on a difference of temperatures; 
a complete separation between the variable and invariant parts of the 
device; 
the explicit possibility of zeros in the dynamic response of the corre- 
sponding time-invariant system. 

13 
L .i. Information that can be experimentally achieved 

From the analysis of time-varying calorimetric models we attempt to 
design a working procedure which enables the thermogenesis to be recovered 
with the greatest possible accuracy and, at the same time, be experimentally 
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feasible. From an experimental point of view, three kinds of measurements 
can be performed which will help to study the behaviour of the system: 

(1) 

(2) 

(3) 

Studying the output decay from a Heaviside input signal at different 
levels of cell contents, in two cases: (a) in a process without injection in 
which the heat released by means of the Joule effect is cut off; (b) 
stopping the injection of a liquid A into another liquid B once a nearly 
steady state in the thermogram has been reached. 
Studying the output decay from a Heaviside input signal released by 
means of the Joule effect while, during the whole process, a liquid A is 
being injected into the same liquid A. 
Studying the differences between the permanent regimes in the thermo- 
gram of a constant Joule effect dissipation when the system is kept 
invariant (there is no injection) and when a liquid identical to the liquid 
filling the vessel is being injected. In this last situation a permanent 
regime is reached only if the thermal couplings with the laboratory cell 
show a null or very small variation during the process of injection and in 
contrast with the change in the heat capacity of the vessel (see fig. 2 
from ref. 2). 

Measurements of types (1) and (2) will be useful to evaluate the change in 
the dynamic parameters of the calorimeter during injection, while measure- 
ments of type (3) will give information about the change in sensitivity. 

Generally speaking, we may say that by means of the Joule effect we are 
able to study the system in the time-invariant situation at different levels of 
filling and the system in the variable situation as well. On the contrary, in a 
typical experiment of mixture we only get information from the output 
decays after stopping the injection, i.e. in time-invariant situations. 

To relate the time-invariant and the variable regimes in the actual 
experiments it is therefore necessary to relate, previously, both regimes in 
the Joule effect measurements. The natural way to establish the relation 
between the parameters of the system in the time-invariant and the variable 
regimes is to compare and analyse the equations of the calorimetric model in 
both situations. This is done in the following section. 

1.3. Time-invariant and variable models: “fictitious equations” 

The system of linear differential equations (1) may be rewritten, after 
successive substitutions, as a linear differential equation of the form: 

E a:(t)diy = i$oA;(t,~ 
i=O 

where the coefficients ai and Ai will in general depend on C,(t), P,(t) and 
P,k( t) and on their derivatives which will have appeared in the process of 
substitution. 
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In the time-invariant situation, i.e. for a certain fixed level of contents 
x(t,), we get a differential equation with constant coefficients of the form: 

5 a;(x) d’y 
i=o 

= ; a;(,)~ 
i=o 

(3) 

The coefficients a;(x) and Ai( x) correspond to the coefficients a;(t) and 
A:(t), respectively, for a fixed level of cell contents x(t). As there is no 
change of the level with time, all the dependence on temporal derivatives of 
capacities and coupling vanishes; this is the reason why the coefficients a, 
and Ai do not coincide with ai and Ai at any time and, in particular, are 
different for the level reached at t = t,. 

At this point it is important to stress the fact that only the coefficients ai 
and Ai can be experimentally determined from the decay of the thermogram 
after stopping the injection. Hence, although in eqn. (2) a formal relation 
between the thermogenesis W(t) and the thermogram s(t) has already been 
established, and will enable the deconvolution of the thermogram to be 
performed we still lack a method of deducing the coefficients al and A: 
from ai and A,. It should be noted, however, that if the flow of injected 
fluid progressively decreases to zero the coefficients in eqn. (2) tend towards 
the coefficients in eqn. (3) until, at zero flow, they are equal. 

To relate one group of coefficients to the other we introduce a new set of 
differential equations which we call “fictitious equations” in a sense that 
will be made clear below. The equations must satisfy two conditions at once: 
firstly, for a given level of contents x(t) they must be equations with 
constant coefficients so that in the process of substituting an equation in the 
preceding ones no derivatives of capacities and couplings appear; and, 
secondly, the coefficients must coincide with the coefficients ai and A: in 
eqn. (2) for the different levels of cell contents. 

Generally speaking, the “fictitious equations” are obtained from eqn. (2) 
of the variable system by adding all the dependence in the temporal 
derivatives of capacities and couplings to the actual capacities and couplings 
appearing in eqn. (2). 

Example 
To clear up the process, let us consider a simple example of a calorimetric 

model with two capacities where the heat is released at element 1 and where 
C,, P, and PI2 vary with time. 

The equivalent of eqns. (1) for this model are: 

IV= Cii; + P,,(T, - T2) + P,T, + k,T, 

0 = C& + PI2 ( T2 - T,) + P,T, 

From the second equation we get for the temperature T,: 

Tl = T2 + $(C,i; + P,T,) 
12 
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and therefore 

Substituting in the first equation we get the equivalent 
model: 

of eqn. (2) for this 

Formally, the same equation could have been obtained from the following 
system: 

0 = C,i-, + P,,(Tz - T,) + P,T, 

if we consider now that for every level of contents, and therefore at every 
instant of time, the parameters C,, P, and PI2 have fixed values and in the 
substitution of one equation into the other they do not bring new derivatives 
(which have already been introduced ad hoc). 

The new system obtained in this way is only a mathematical tool. It has 
no direct physical meaning and, in many instances, it cannot be associated 
with an invariant model; in the example presented, for instance, the matrix 
of thermal couplings becomes non-symmetric. Non-physical situations, such 
as the transfer of heat from low to high temperatures, can also appear. 

The important feature is that the new system coincides with the variable 
system of the type (1) for every level of liquid in the cell and at the same 
time it is time-invariant. Hence, it is possible to obtain the parameters 
defining the impulse response of the model (poles -l/7,1, zeros -l/r,*‘, 
and the sensitivity S’) by simply applying the standard methods to solve 
linear systems with constant coefficients. In particular, the Laplace trans- 
form turns the system of differential equations into an algebraic system 
whose solution is the ensemble of values { r/, T,*‘}. If this solution is 
calculated at different times I,, . . . , t, corresponding to increasing quantities 
of substance in the vessel, a polynomial fit r:(f) and I,*’ can be found for 
every pole and zero of the model, and, along similar lines, for the sensitivity 
S’. Then, the coefficients al(t) and A;(t) in eqn. (2) can directly be obtained 
because the values a:(t) and AJ(t)S’(t) are exactly the coefficients of the 
polynomials whose roots are, respectively, - l/r*‘(t) and - l/r/( t>. Once 
this process is accomplished, eqn. (2) can be solved and the dissipation W(t) 
recovered from the thermogram S(t). 
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2. CALCULATIONS AND RESULTS 

The fictitious equations are helpful in calculating the values of +(t), 
7,*‘(t) and S’(t) once we have a variable model of the calorimeter, but they 
do not tell us how to obtain these values from actual measurements if such a 
model, as it is most often the case, is missing. In this section the fictitious 
equations are used to show that, in a wide variety of cases, 7,‘(t), 7,*‘(t) and 
S’(t) have the same temporal behaviour as T,(t), T,*(t) and S(t), respec- 
tively, their homologues for the invariant eqn. (3) which can actually be 
obtained from experiments, and are only shifted from them by certain 
constant quantities. The way in which these constant quantities can be 
experimentally ascertained is also explained, and this completes our sys- 
tematic treatment. 

2.1. Particular models considered 

The model studied has six different capacitive elements coupled in the 
form shown in Fig. 1. The coupling between elements 4 and 6 gives a zero in 
the transfer function of the invariant model. The numerical values assigned 
to heat capacities and couplings are summarized in Table 1. 

The following situations have been studied: 
(1) Dissipation in element 1 with C,, P,, and P, as time-varying elements. 

The variation of P,, makes the sensitivity of the model variable too. 
(2) Dissipation in element 2, with C’, variable. This simulates the presence 

of the stirrer, represented by element 1, as an inert part of the vessel, in axial 

position. 
(3) Dissipation in element 2, with C,, P,*, Pz3 and P2 varying with time. 

In this case the effects of the stirrer and the injection are taken into account. 
The model will have a sensitivity variable with time. 

TABLE 1 

Values of the heat capacities (J K-‘) and thermal couplings (W K-‘) of the calorimetric 
model used to perform the numerical simulations in the three situations detailed in the text. 
The values between parentheses are the initial value of the time-varying parameters in each 
situation 

Situation 

1 2 and 3 1 2 and 3 1 2 and 3 

c-1 (40) 
(4;) 

PI (0.075) 0.02 P 12 (0.25) (0.45) 

c, 20 p2 0.075 (0.075) p23 0.35 (0.8) 
C, 20 60 p3 0.25 0.1 P 34 0.55 0.4 
C, 18 40 p4 0.75 0.6 p45 0.75 1.75 
c5 18 18 ps 0.08 0.08 p56 1.25 1.25 
C, 18 18 pb 1.25 1.25 p46 0.1 1.0 
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TABLE 2 

Rates of evolution (in SI units) of the variable thermal parameters in the three different 
situations considered in the text. The numbers (I), (2), (3) and (4) are to identify the curves in 
Figs. 2, 3 and 4. The values of this table have been selected in a way that (4) simulates a 
double rate of injection to that of (3), and (3), in turn, simulates a rate of injection four times 
greater than (2). 

Curve Situation 

(1) 

(2) 

(3) 

(4) 

1 

Time-invariant 

c, = 0.2778E - 2 

k, = 0.1764E - 5 

k,* = O.l736E-5 

c, = O.llllE-1 

Q, = 0.7056E - 5 

&,, = 0.6944E - 5 

c, = 0.2222E- 1 

P, =1.4112E-5 

k,, =1.3888E-5 

2 3 

Time-invariant Time-invariant 

t?, = 0.2778E - 2 6, = 0.2778E - 2 

& = 0.0 4 = 0.2084E - 5 

li,z = 0.0 li12 = 0.3125E-4 

Pz3 = 0.0 kz3 = 0.2778E - 4 

($ = O.lfllE- 1 kz = O.llllE- 1 

kz = 0.0 i’z = 0.8336E - 5 

li1* = 0.0 i’,* = O.l250E- 3 

iJz3 = 0.0 4, = O.llllE- 3 

c, = 0.2222E - 1 cl = 0.2222E - 1 

i;. = 0.0 kz = 1.6672E - 5 

t;,, = 0.0 k’,, = 0.25508-3 

i;, = 0.0 Pz3 = 0.2222E - 4 

In all cases the thermogram has been obtained as the difference between 
temperatures T5 and T6. The variation of the thermal parameters has been 
taken as linear, with different rates of evolution summarized in Table 2. 

2.2. Results and conclusions 

The values of T,, T,*, S and 7,1, T;*‘, S’ for different levels x in the cell 
contents and for the three situations considered are given, respectively, in 
Tables 3, 4 and 5. For a given value of the heat capacity of the laboratory 
vessel we notice that 

T,(X) = T;(x) 

T;*‘(x) =7,*(x 

vi += 1 

> ‘d, 
(4) 

Figures 2, 3 and 4 show T, and S’ as a function of the heat capacity for 
different rates of variation in the parameters. In particular, the case of zero 
rate, corresponding to the invariant model at every level of vessel contents, 
has also been considered. From this figures we conclude that 

T{(X)= TV+ AT 

S’(x) = S(x) + AS 
(5) 
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TABLE 3 

Evolution of To, T,‘, T,*, q* (s) and S, S’ (K W-‘) with the evolution of the heat capacity C, 
of the model in situation 1 

c, = 40 44 48 52 56 60 

71 217.74 233.11 284.09 262.70 276.97 290.90 
r; 215.18 230.15 244.75 259.04 272.93 286.46 
72 42.94 43.27 43.52 43.70 43.84 43.94 
% 42.93 43.26 43.51 43.70 43.84 43.94 
73 24.95 24.96 24.97 24.98 24.97 24.97 
7; 24.95 24.96 24.97 24.98 24.98 24.97 
74 15.44 15.44 15.43 15.43 15.43 15.43 
T4 15.44 15.44 15.43 15.43 15.43 15.43 
75 7.22 7.22 7.22 7.22 7.22 7.22 
7; 7.22 7.22 7.22 7.22 7.22 7.22 
76 4.82 4.82 4.82 4.82 4.82 4.82 
TQ 4.82 4.82 4.82 4.82 4.82 4.82 
s(x10-5) 6004 5950 5897 5846 5795 5746 
S’ ( x1o-5) 5931 5873 5817 5763 5710 5658 
TI* 12.59 12.59 12.59 12.59 12.59 12.59 

*, 71 12.59 12.59 12.59 12.59 12.59 12.59 

where Ar and AS have constant values which depend on the rate of 
injection, i.e. the rate at which the vessel is filled. This pattern of behaviour 
is believed to be of general applicability; then, the following experimental 

TABLE 4 

Evolution of r,, r,‘, r,*, r,*’ (s) and S, S’ (K W-l) with the evolution of the heat capacity C, 
of the model in situation 2 

c, = 40 44 48 52 56 60 

222.10 231.72 241.45 251.29 261.23 271.26 
220.70 230.20 239.89 249.65 259.51 269.45 

37.47 38.07 38.66 39.26 39.84 40.41 
37.47 38.06 38.66 39.25 39.84 40.41 
26.69 27.29 27.80 28.21 28.56 28.85 
26.68 27.29 27.80 28.21 28.56 28.85 

9.25 9.39 9.50 9.60 9.68 9.74 
9.24 9.38 9.49 9.59 9.67 9.74 
5.66 5.66 5.66 5.66 5.66 5.66 
5.66 5.66 5.66 5.66 5.66 5.66 
3.92 3.92 3.92 3.92 3.92 3.92 
3.92 3.92 3.92 3.92 3.92 3.92 

s (x10-q 9309 9309 9309 9309 9309 9309 
S’ (X 10-5) 9239 9238 9238 9238 9238 9238 
7: 10.64 10.64 10.64 10.64 10.64 10.64 

*r 71 10.64 10.64 10.64 10.64 10.64 10.64 
r2* 6.41 6.41 6.41 6.41 6.41 6.41 

*I 72 6.41 6.41 6.41 6.41 6.41 6.41 
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TABLE 5 

Evolution of r,, r,‘, r;*, r,*’ (s) and S, S’ (K W-t) with the evolution of the heat capacity C, 
of the model in situation 3 

C,=40 44 48 52 56 60 

r1 222.10 229.61 237.00 244.27 251.41 258.42 
r ; 220.77 228.26 235.62 242.87 249.99 256.99 
72 37.48 37.55 37.60 37.62 37.62 37.61 
r; 37.48 37.55 37.60 37.62 37.62 37.61 
73 26.69 26.47 26.24 26.00 25.74 25.47 
r; 26.69 26.48 26.25 26.00 25.75 25.48 
74 9.25 8.57 7.98 7.46 7.00 6.59 
rd 9.25 8.58 7.98 7.46 7.00 6.59 
75 5.66 5.66 5.66 5.66 5.66 5.66 
r; 5.66 5.66 5.66 5.66 5.66 5.66 
76 3.92 3.92 3.92 3.92 3.92 3.92 
r6 3.92 3.92 3.92 3.92 3.92 3.92 
S (x10-q 9310 9271 9232 9193 9153 9113 
S’ (xlo-5) 9258 9222 9184 9146 9107 9068 
r;” 10.64 9.71 8.93 8.26 7.69 7.19 

*I 71 10.64 9.71 8.93 8.26 7.69 7.19 
r2* 6.41 6.41 6.41 6.41 6.41 6.41 

*, 
72 6.41 6.41 6.41 6.41 6.41 6.41 

procedure is to be considered in order to perform the deconvolution of the 
thermograms: 

(i) To determi ne the value of Ar for each injection rate it is necessary to 
calculate T; once, by means of an identification using a variable inverse 
filtering [4]. In this calculation, the slope of 7; is taken equal to the slope of 

300 

250 

200 

0.066 

0.055 

0.056 

I- 

( 
* 

Fig. 2. Variation of (A) the main time constant r,’ and (B) the sensitivity S’ of the variable 
model as a function of the heat capacity C,. The dissipation takes place in element 1, and C,, 
P,, and P, vary with time. The different curves (l), (2), (3) and (4) correspond to different 
rates of variation of these parameters as detailed in Table 2 (situation 1). 
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L‘ 52 60 

Fig 3. Variation of (A) the main time constant r; and (B) the sensitivity S’ of the variable 
model as a function of the heat capacity C,. The dissipation takes place in element 2, and C, 
is the only parameter varying with time. The different curves (1) (2) (3) and (4) correspond 
to different rates of variation of C,, detailed in Table 2 (situation 2). 

7,. The thermogram to be analysed is the decay obtained when a constant 
Joule effect is switched off while, for the whole process, liquid A is injected 
into liquid A. 

To determine AS two ways are possible: 
(a) If the thermal couplings between the vessel and the rest of the calorime- 

ter do not appreciably change when the liquid is injected, the following 
experiment gives AS directly for a given injection rate and for a given 
injected substance: initially the system is at a homogeneous temperature 
and there is no output signal. Then a constant power is released by 
means of the Joule effect and an invariant steady state is reached. If 

200 0.389 
C,M) 

;4 52 60 LL 52 60 

Fig. 4. Variation of (A) the main time constant 7; and (B) the sensitivity S’ of the variable 
model as a function of the heat capacity C,. The dissipation takes place in element 2, and C,, 
P P2. and P2 vary with time. The different curves (I), (2), (3) and (4) correspond to 
di%erent rates of variation of these parameters, as detailed in Table 2 (situation 3). 
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Fig. 5. Simulation of the change in the sensitivity of the calorimeter when the heat capacity 
C, of the vessel increases linearly with time, due to the injection of liquid. The simulation has 
been carried out with a model in which C, is the only time-varying parameter, corresponding 
to situation 2 in Table 2. 

(b) 

liquid A is now injected into liquid A, after a certain time another 
permanent state will be reached with a lower signal than the one before, 
because the liquid injected absorbs part of the heat released. Halting the 
injection leads to a recovery of the preceding steady state, which will 
now correspond to a different level in the cell contents. The difference 
between the two permanent states is AS, as shown in Fig. 5. 

The value of AS for other injection rates and other substances can 
then be obtained directly, as described in ref. 3, by considering the ratio 
between the products pci’ (density x specific heat x injection rate) cor- 
responding to the experiment described above and to the experiment in 
which AS is searched for, respectively. 
If the conditions in (a) do not hold, a thermogram corresponding either 
to a Joule effect with injection of A into A or to a standard mixture will 
be used. This thermogram has to be filtered using the values +, T,*’ and 
the sensitivity S(t). If we call z(t) the resulting signal and W(r) the 
actual thermogenesis we are able to write: 

[S(t) + AS] I+‘(t) = [S(+(t> 

and therefore 

AS = S(t) - - 
[ 1 m 1 W(t) 

(ii) From the knowledge of r,(x), T,*(X) and S(x), which can be obtained 
from time-invariant experiments, and Ar and AS, expressions (4) and (5) 
give T,‘(X), 7;*‘(x) and S’(x) as functions of the level of vessel contents and, 
hence, x(t) being known, as functions of time. 



162 

(iii) As explained in section 1.3, 7,‘(t), I,*’ and .S’(t) determine in a 
unique way the coefficients a:(t) and A;(l), i.e. a differential equation of 
the kind (2) describing the time-varying experimental system. 

The differential equation, once its coefficients are known, can be solved 
numerically to get the actual thermal power W(t) released in the calorimeter 
from the experimental thermogram S(t). 
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